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Abstract: This article’s goal is to present a mathematical paradigm, Pentaparti-
tioned Fermatean Neutrosophic Soft-Rough Set (PFN-SRS). PFN-SRS integrates
elements of neutrosophic sets, Fermatean sets, Soft sets and Rough sets, providing
a robust tool for addressing the intricate issues of data inconsistency, imprecision
and ambiguity. We present a comprehensive exploration of PFN-SRS, encompass-
ing its definition, properties and mathematical structures. To demonstrate the
practical utility of PFN-SRS, we introduce and apply the ANMABA method. The
PFN-SRS framework empowers a more nuanced and adaptable approach to han-
dling uncertainty and imprecision in decision making problems. ANMABA method
for PFN-SRS provides actionable perception and can be applied to solve various
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problems in industries in different contexts. By utilizing ANMABA method for
PFN-SRS, organizations can improve their services by using data-driven decision-
making and gain insightful knowledge about consumer satisfaction.

Keywords and Phrases: Pentapartitioned fermatean neutrosophic soft rough
sets, UPFN-SR operator, LPFN-SR operator.
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1. Introduction

The fuzzy set was first presented by Zadeh [26] in 1965. In 1998, Smarandache
[22] developed the notion of neutrosophic sets by utilizing the ideas of intuitionistic-
fuzzy-sets [1] and fuzzy sets. The foundation for the ideas of Neutrosophic Topo-
logical Space was established in 2012 by Salama et al. [19]. Das et al. [12] proposed
the concept of neutrosophic simply soft open sets in neutrosophic soft topological
spaces. In 2020, the introduction of Pentapartitioned Neutrosophic sets and associ-
ated properties was done by Pramanik et al. [14]. Followed in their footsteps, Das
et al. [1] delved into the Pentapartitioned Neutrosophic Sets in 2020. The main
objective of this article is to provide more refined and accurate representations of
real- world problems, enabling informed decisions.

ANMABA method can be used in decision-making processes in various domains
particularly in the service sector. We have contributed a novel method, termed
the ANMABA-method, designed to enhance customer satisfaction-based decision-
making processes. This innovative approach synergistically integrates fuzzy sets,
neutrosophic sets, soft sets and rough sets to provide a more comprehensive and
precise understanding of customer needs and preferences. By accurately capturing
customer preferences and needs, the ANMABA-method enables organizations to
deliver tailored solutions, ultimately driving higher customer satisfaction and fos-
tering long-term loyalty. In this article ANMABA method enables decision-makers
to assess candidates based on multiple, often conflicting, criteria. Its precise ap-
proach helps organizations identify top talent, streamlining the selection process
and improving hiring outcomes. This work intended to present the ideas behind
Pentapartitioned Fermatean Neutrosophic Soft-Rough sets and explore its proper-
ties. Additionally, the ANMABA method’s applicability to the Pentapartitioned
Fermatean Neutrosophic Soft-Rough set is examined in this paper through an ex-
ample.

3. Preliminaries

Definition 3.1. [20] Let I = [0, 1] and B ̸= ∅. The form of a fermatean fuzzy
set MF is {(χ, ϕMF

(χ), ψMF
(χ)) : χ ∈ B}, where the truth membership and fal-
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sity memberships are represented by ϕ, ψ : B → [0, 1] respectively. Additionally,
0 ≤ ϕMF

3(χ) + ψMF

3(χ) ≤ 1 ∀χ ∈ B.

Definition 3.2. [22] The explication of neutrosophic set(single valued) MN over
a fixed set B is as follows: MN = {(χ, ϕMN

(χ), ηMN
(χ), ψMN

(χ)) : χ ∈ B},
where the truth membership function, indeterminacy function and falsity mem-
bership functions are denoted by ϕMN

, ηMN
, ψMN

: B → [0, 1] respectively, 0 ≤
ϕMN

+ ηMN
+ ψMN

≤ 3.

Definition 3.3. [10] If B is any fixed set, then the following defines a penta-
partitioned neutrosophic set (abbreviated PNS) M over B. M = {(χ, ϕM(χ), νM(χ),
ηM(χ), ζM(χ), ψM(χ)) : χ ∈ B}, where the truth function, contradiction function,
ignorance function, unknown function, falsity membership values of each χ ∈ B
are denoted by ϕM(χ), νM(χ), ηM(χ), ζM(χ), ψM(χ)[∈ [0, 1]] respectively satisfying
0 ≤ ϕM(χ) + νM(χ) + ηM(χ) + ζM(χ) + ψM(χ) ≤ 5, for all χ ∈ B.

Definition 3.4. [13] Let B be a fixed set. Then, a pentapartitioned fermatean neu-
trosophic set (in short PF-NS) M over B is defined as follows : M = {(χ, ϕM(χ),
νM(χ), ηM(χ), ζM(χ), ψM(χ) : χ ∈ B}, where the truth function, contradiction
function, ignorance function, unknown function, falsity membership function val-
ues for χ ∈ B are denoted by ϕM(χ), νM(χ), ηM(χ), ζM(χ), ψM(χ)[∈ [0, 1]] sat-
isfying 0 ≤ ϕM(χ) + νM(χ) + ηM(χ) + ζM(χ) + ψM(χ) ≤ 4, for all χ ∈ B.
0 ≤ ϕ3

M(χ) + ψ3
M(χ) ≤ 1, 0 ≤ ν3M(χ) + η3M(χ) + ζ3M(χ) ≤ 3.

4. Pentapartitioned Fermatean Neutrosophic Soft-Rough Set

Definition 4.1. θ̄(A) = {ϕθ̄(A)(χ), νθ̄(A)(χ), ηθ̄(A)
(χ), ζθ̄(A)(χ), ψθ̄(A)(χ) : χ ∈ B},

θ(A) = {ϕθ(A)
(χ), νθ(A)

(χ), ηθ(A)
(χ), ζθ(A)

(χ), ψθ(A)
(χ) : χ ∈ B},

where, ϕθ̄(A)(χ) =
∨

σ∈M [ϕθ(A)(χ, σ) ∧ ϕA(σ)], νθ̄(χ) =
∨

σ∈M [νθ(A)(χ, σ) ∧ νA(σ)],
ηθ̄(A)(χ) =

∧
σ∈M [ηθ(A)(χ, σ) ∨ ηA(σ)], ζθ̄(A)(χ) =

∧
σ∈M [1− ζθ(A)(χ, σ) ∨ ζA(σ)],

ψθ̄(A)(χ) =
∧

σ∈M [ψθ(A)(χ, σ) ∨ ψA(σ)], ϕθ(A)
(χ) =

∧
σ∈M [ψθ(A)(χ, σ) ∨ ϕA(σ)],

νθ(A)
(χ) =

∧
σ∈M [νθ(A)(χ, σ) ∨ νA(σ)], ηθ(A)

(χ) =
∨

σ∈M [ηθ(A)(χ, σ) ∧ ηA(σ)],

ζθ(A)
(χ) =

∨
σ∈M [1 − ζθ(A)(χ, σ) ∧ ζA(σ)], ψθ(A)

(χ) =
∨

σ∈M [ϕθ(A)(χ, σ) ∧ ψA(σ)],

Satisfying 0 ≤ ϕθ̄(A)(χ) + νθ̄(A)(χ) + η
θ̄(A)

(χ) + ζθ̄(A)(χ) + ψθ̄(A)(χ) ≤ 4;

0 ≤ ϕθ̄(A)
3(χ) + ψθ̄(A)

3(χ) ≤ 1; 0 ≤ νθ̄(A)
3(χ) + ηθ̄(A)

3(χ) + ζθ̄(A)
3(χ) ≤ 2. 0 ≤

ϕθ(A)
(χ)+νθ(A)

(χ) + η
θ(A)

(χ)+ζθ(A)
(χ)+ψθ(A)

(χ) ≤ 4; 0 ≤ ϕθ(A)
3(χ)+ψθ(A)

3(χ) ≤
1; 0 ≤ νθ(A)

3(χ) + ηθ̄(A)
3(χ) + ζθ̄(A)

3(χ) ≤ 2. (θ̄(A), θ(A)) is said to be pentaparti-

tioned fermatean neutrosophic soft-rough set. θ̄ is called UPFN-SR operator and θ
is called LPFN-SR operator. The operators

∨
and

∧
stands for max or join and



310 South East Asian J. of Mathematics and Mathematical Sciences

min or meet operators respectively. Clearly, θ̄(A) and θ(A) are undoubtedly two
PF-NSs over B.

Definition 4.2. Pentapartitioned fermatean neutrosophic soft-rough number (in
short PFN-SRN) for all χ ∈ B is defined as follows [< ϕθ̄(A)(χ), νθ̄(A)(χ), ηθ̄(A)

(χ),

ζθ̄(A)(χ), ψθ̄(A)(χ) >,< ϕθ(A)
(χ), νθ(A)

(χ), ηθ(A)
(χ), ζθ(A)

(χ), ψθ(A)
(χ) >].

Definition 4.3. If B be a fixed set. Then, 1PFN and 0PFN over B are given below:

1. 1PFN = {[(χ, 1, 1, 0, 0, 0), (χ, 0, 0, 1, 1, 1)] : χ ∈ B};

2. 0PFN = {[(χ, 0, 0, 1, 1, 1), (χ, 1, 1, 0, 0, 0)] : χ ∈ B}.

Remark 4.1. Clearly, 0PFN ⊆M ⊆ 1PFN , for every PF-NS M over B.

Example 4.1. Suppose that Mr.Rahul wants to choose the most appropriate career
out of the set of careersM = {χ1, χ2, χ3, χ4}. N is equal to {σ1, σ2, σ3}. N is a group
of criteria for decisions. As demonstrated below, Mr.Rahul defines a pentaparti-
toned fermatean neutrosophic soft set (M,N) on B, which is a pentapartitoned fer-
matean neutrosophic relation in order to characterize the most suitable career from
B to M. LetA = {(σ1, 0.4, 0.4, 0.2, 0.7, 0.4), (σ2, 0.3, 0.4, 0.4, 0.7, 0.2), (σ3, 0.3, 0.4, 0.3,

χ1 χ2 χ3 χ4

σ1 (0.2,0.3,0.4,0.6,0.5) (0.3,0.1,0.3,0.4,0.3) (0.2,0.1,0.4,0.3,0.4) (0.4,0.2,0.3,0.3,0.4)

σ2 (0.2,0.2,0.5,0.5,0.4) (0.3,0.2,0.3,0.3,0.6) (0.4,0.1,0.3,0.3,0.4) (0.5,0.2,0.3,0.3,0.8)

σ3 (0.3,0.1,0.3,0.6,0.2) (0.4,0.2,0.5,0.5,0.6) (0.4,0.1,0.6,0.3,0.4) (0.5,0.2,0.4,0.3,0.6)

0.7, 0.3)} Then θ̄(A) = {(χ1, 0.3, 0.3, 0.3, 0.7, 0.3), (χ2, 0.3, 0.2, 0.3, 0.7, 0.4), (χ3, 0.3,
0.1, 0.4, 0.3, 0.4), (χ4, 0.4, 0.2, 0.3, 0.3, 0.4)}. θ(A) = {(χ1, 0.3, 0.4, 0.4, 0.5, 0.3),
(χ2, 0.4, 0.4, 0.3, 0.7, 0.3), (χ3, 0.4, 0.4, 0.3, 0.7, 0.3), (χ4, 0.4, 0.4, 0.3, 0.7, 0.4)}.
Definition 4.4. If (θ̄(M), θ(M)) & (θ̄(N), θ(N)) be any two PFN-SRS
over B, then (θ̄(M), θ(M)) ⊆ θ̄(N), θ(N)) iff ϕθ̄(M)(χ) ≤ ϕθ̄(N)(χ),
νθ̄(M)(χ) ≤ νθ̄(N)(χ), ηθ̄(M)

(χ)≥ ηθ̄(N)(χ), ζθ̄(M)(χ)≥ ζ θ̄(N)(χ), ψθ̄(M)(χ) ≥ ψθ̄(N)(χ),

ϕθ(M)
(χ) ≤ ϕθ(N)

(χ), νθ(M)
(χ) ≤ νθ(N)

(χ), ηθ(M)
≥ ηθ(N)

(χ), ζθ(M)
(χ)≥ ζθ(N)

(χ),

ψθ(M)
(χ),≥ ψθ(N)

(χ) for all χ ∈ B.

Example 4.2. Consider two PFN-SRS (θ̄(M), θ(M)) = {[(χ1, 0.3, 0.4, 0.5, 0.7, 0.3),
(χ2, 0.3, 0.6, 0.4, 0.8, 0.4)], [(χ1, 0.1, 0.2, 0.5, 0.4, 0.6), (χ2, 0.2, 0.2, 0.4, 0.4, 0.5)} and
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(θ̄(N), θ(N)) = {[χ1, 0.4, 0.7, 0.1, 0.5, 0.2), (χ2, 0.8, 0.9, 0.2, 0.1, 0.2)], [(χ1, 0.2, 0.3,
0.4, 0.3, 0.5), (χ2, 0.3, 0.3, 0.4, 0.3, 0.3)]} over a fixed set B = {χ1, χ2}. Then
(θ̄(M), θ(M)) ⊆ (θ̄(N), θ(N)).

Definition 4.5. Let (θ̄(M), θ(M)) & (θ̄(N), θ(N)) be any two PFN-SRS over
B. Then, the intersection of (θ̄(M), θ(M)) and (θ̄(M), θ(M)) is [θ̄(M ∩N), θ(M ∩
N)] = {[ϕθ̄(M)(χ)∧ϕθ̄(N)(χ), νθ̄(M)(χ) ∧νθ̄(N)(χ), ηθ̄(M)(χ) ∨ηθ̄(N)(χ), ζθ̄(M)(χ)∨ζ θ̄(N)

(χ), ψθ̄(M)(χ)∨ψθ̄(N)(χ)], [ϕθ(M)
(χ)∧ϕθ(N)

(χ), νθ(M)
(χ)∧νθ(N)

(χ), ηθ(M)
(χ)∨ηθ(N)

(χ), ζθ(M)
(χ)∨ζθ(N)

(χ), ψθ(M)
(χ) ∨ ψθ(N)

(χ)]/χ ∈ B}.

Example 4.3. Consider two PFN-SRS (θ̄(M), θ(M)) = {[(χ1, 0.4, 0.4, 0.5, 0.6, 0.3),
(χ2, 0.2, 0.6, 0.3, 0.8, 0.4)], [(χ1, 0.1, 0.3, 0.5, 0.1, 0.6), (χ2, 0.2, 0.2, 0.2, 0.4, 0.1)]} and
(θ̄(N), θ(N)) = {[(χ1, 0.4, 0.4, 0.1, 0.4, 0.2), (χ2, 0.7, 0.5, 0.2, 0.1, 0.2)], [(χ1, 0.1,
0.3, 0.4, 0.3, 0.4), (χ2, 0.2, 0.3, 0.2, 0.3, 0.3)]} over a fixed set B = {χ1, χ2}. Then
(θ̄(M), θ(M))∩(θ̄(N), θ(N)) = {[(χ1, 0.4, 0.4, 0.5, 0.6, 0.3), (χ2, 0.2, 0.5, 0.3, 0.8, 0.4)],
[(χ1, 0.1, 0.3, 0.5, 0.3, 0.6)(χ2, 0.2, 0.2, 0.2, 0.4, 0.3)]}
Definition 4.6. Let (θ̄(M), θ(M)) & (θ̄(N), θ(N)) be any two PFN-SRS over B.
Then, the union of M and N is [θ̄(M ∪ N), θ(M ∪ N)] = {[ϕθ̄(M)(χ) ∨ ϕθ̄(N)(χ),
νθ̄(M)(χ) ∨ νθ̄(N)(χ), ηθ̄(M)(χ) ∧ηθ̄(N)(χ), ζθ̄(M)(χ) ∧ζ θ̄(N)(χ), ψθ̄(M)(χ)∧
ψθ̄(N)(χ)], [ϕθ(M)

(χ) ∨ ϕθ(N)
(χ), ηθ(M)

(χ)∧ηθ(N)
(χ), ζθ(M)

(χ)∧ζθ(N)
(χ), ψ

θ(M)
(χ) ∧

ψθ(N)
(χ)]/χ ∈ B}.

Example 4.4. Consider two PFN-SRS (θ̄(M), θ(M)) = {[(χ1, 0.2, 0.2, 0.5, 0.6, 0.3),
(χ2, 0.2, 0.6, 0.3, 0.8, 0.4)], [(χ1, 0.1, 0.3, 0.5, 0.1, 0.6), (χ2, 0.2, 0.2, 0.2, 0.4, 0.1)]} and
(θ̄(N), θ(N)) = {[χ1, 0.4, 0.4, 0.1, 0.4, 0.2), (χ2, 0.7, 0.5, 0.2, 0.1, 0.2)], [(χ1, 0.1, 0.3,
0.4, 0.3, 0.4), (χ2, 0.2, 0.3, 0.2, 0.3, 0.3)]} over a fixed set B = {χ1, χ2}. Then, (θ̄(M),
θ(M)) ∪ (θ̄(N), θ(N)) = {[(χ1, 0.4, 0.4, 0.1, 0.4, 0.2), (χ2, 0.7, 0.6, 0.2, 0.1, 0.2)],
[(χ1, 0.1, 0.3, 0.4, 0.1, 0.4), (χ2, 0.2, 0.3, 0.2, 0.3, 0.1)}.
Definition 4.6. Let (θ̄(M), θ(M)) & (θ̄(N), θ(N)) be two PFN-SRS over B. Then
the complement of M, MC = (θ̄(MC), θ(MC)) = {[ψθ̄(M)(χ),νθ̄(M)(χ), 1− η

θ̄(M)
(χ),

ζθ̄(M)(χ), ϕθ̄(M)(χ)],[ψθ(M)
(χ), ν

θ(A)
(χ), 1− ηθ(M)

(χ), ζθ(M)
(χ), ϕθ(M)

(χ)]χ ∈ B}.

Example 4.5. Consider two PFN-SRS (θ̄(M), θ(M)) = {[(χ1, 0.2, 0.2, 0.5, 0.6, 0.3),
(χ2, 0.2, 0.6, 0.3, 0.8, 0.4)], [(χ1, 0.1, 0.3, 0.5, 0.1, 0.6), (χ2, 0.2, 0.2, 0.2, 0.4, 0.1)]} and
(θ̄N), θ(N)) = {[χ1, 0.4, 0.4, 0.1, 0.4, 0.2),(χ2, 0.7, 0.5, 0.2, 0.1, 0.2)], [(χ1, 0.1, 0.3,
0.4, 0.3, 0.4), (χ2, 0.2, 0.3, 0.2, 0.3, 0.3)]} over a fixed set B = {χ1, χ2}. Then
(θ̄(M), θ(M))∪(θ̄(N), θ(N)) = {[(χ1, 0.4, 0.4, 0.1, 0.4, 0.2), (χ2, 0.7, 0.6, 0.2, 0.1, 0.2)],
[(χ1, 0.1, 0.3, 0.4, 0.1, 0.4), (χ2, 0.2, 0.3, 0.2, 0.3, 0.1)]}.
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5. An Application of PFN-SRS Using ANMABA Method in Decision
Making

In this part, we introduce a new method namely ANMABA method for Pen-
tapartitioned fermatean neutrosophic soft-rough set which is useful in decision-
making problems.

Definition 5.1. Score function for PFN−SRS = {Upper Single valued PFN-SRS
+ Lower Single valued PFN-SRS} /2
where, Upper Single valued PFN − SRS = ϕθ̄(A)(χ) + νθ̄(A)(χ) + (1− η

θ̄(A)
(χ)) +

ζθ̄(A)(χ) + ψθ̄(A)(χ)
Lower Single valued PFN-SRS = ϕθ(A)

(χ) + νθ(A)
(χ) + (1− η

θ(A)
(χ)) + ζθ(A)

(χ) +

ψθ(A)
(χ).

ANMABA Algorithm:
Using PFN-SRS:
Step-1 : Define relevant attributes for each factor.
Step-2 : Assign membership grades to each attribute based on the defined factors.
Step-3 : Calculate the PFN-SRS values based on the membership grades of the
attributes.
Step-4 : Using score function for PFN-SRS, find PFN-SRS value.
Step-5 : Take decision based on PFN-SRS value.

Example 5.1. We consider a scenario in which a university admissions committee
is tasked with selecting the most suitable candidates from a pool of applicants.
They consider various factors such as academic performance, extracurricular ac-
tivities, letters of recommendation and entrance exam scores. We define relevant
attributes for each factor to identify the suitable candidate such as:

Factor Attribute-1 Attribute-2

Academic performance (σ1) CGPA Scores on standardized test

Non scholastic activity (σ2) Position of leadership Community work

Entrance exam scores(σ3) Numerical Eligibility Logical Reasoning

The committee assigns membership grades to each attribute based on the eli-
gibility factor and calculates the PFN-SRS values for each applicant based on the
membership grades of the attributes. The applicants are ranked based on their
PFN-SRS values, with the highest-ranked applicants being considered for admis-
sion.
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Applicant σ1 σ2 σ3

Λ1 (0.2,0.2,0.4,0.6,0.5) (0.2,0.1,0.5,0.5,0.4) (0.3,0.2,0.3,0.6,0.2)

Λ2 (0.3,0.1,0.3,0.4,0.3) (0.3,0.2,0.3,0.3,0.6) (0.4,0.2,0.5,0.5,0.6)

Λ3 (0.2,0.1,0.4,0.3,0.4) (0.4,0.1,0.3,0.3,0.4) (0.4,0.1,0.6,0.3,0.4)

Λ4 (0.2,0.3,0.4,0.6,0.5) (0.2,0.2,0.5,0.5,0.4) (0.3,0.1,0.3,0.6,0.2)

Let X = {(σ1, 0.4, 0.4, 0.2, 0.7, 0.4), (σ2, 0.3, 0.4, 0.4, 0.7, 0.2), (σ3, 0.3, 0.4, 0.3,
0.7, 0.3)} Then θ̄(X) = {(Λ1, 0.3, 0.3, 0.3, 0.7, 0.3), (Λ2, 0.3, 0.2, 0.3, 0.7, 0.4), (Λ3, 0.3,
0.1, 0.4, 0.3, 0.4), (Λ4, 0.4, 0.2, 0.3, 0.3, 0.4)}, θ(X) = {(Λ1, 0.3, 0.4, 0.4, 0.5, 0.3), (Λ2,
0.4, 0.4, 0.3, 0.7, 0.3), (Λ3, 0.4, 0.4, 0.3, 0.7, 0.3), (Λ4, 0.4, 0.4, 0.3, 0.7, 0.4)}. We find
the PFN-SRS value by using definition 4.1.

Applicant Λ1 Λ2 Λ3 Λ4

PFN-SRS value 0.4 0.3 0.4 0.5

Based on the PFN-SRS values, Applicant Λ4 is considered the most suitable
candidate for admission, followed by Applicant Λ1 & Λ3 and then Applicant Λ2.

Advantages of using PFN-SRS in this scenario:

1. PFN-SRS can handle uncertainty and imprecision in the evaluation process,
such as when applicants have conflicting strengths and weaknesses.

2. PFN-SRS can consider multiple factors simultaneously, providing a more
comprehensive assessment of each applicant.

3. PFN-SRS can provide a quantitative ranking of applicants, making it easier
to compare candidates and make selection decisions.

By incorporating PFN-SRS into the admissions process, universities can make
more informed and objective decisions.
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